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Figure 2(a) shows the square root of the power spectrum 

for a 3. 3 Mc signal. 

signal after being multiplied in frequency by factors ,of 

Figures Z(b) and Z(c) show the same 

3 and 9 respectivgly 2 1  

Trace 1 is a high resolution spectrum of the central  

peak of a 10 Mc quartz crystal  oscillator whose crystal  

was thermostated in a liquid helium cryostat[51. The 

oscillator was equipped with dc filaments but st i l l  

exhibited 60 cps sidebands about 30 db below the central 

peak (not shown in this figure). This oscillator operates 

at about 13.4 cps above 10 Mc and apparently some 

pickup of the standard is responsible for the sidebands 

shown in this trace. Trace-2 is the response curve of 

the spectrum analyser. 22 

This spectrum was obtained from the same oscillator 

as Figure 3. 

ever,  the oscillator was equipped with 60 cps,  ac fila- 

ments. (Note the different frequency scale). 23 
This Spectrum was obtained by analysing the direct  

beat note between the - f ree  running oscillator -multiplier - 
chain-system and the ammonia maser.  

oscillator which is phase locked to the maser  to give a 

relatively pure signal to be used in the analysing of 

other oscillators. 

was obtained by replacing the maser  -oscillator beat 

At the time this trace was made, how- 

It is thie 

The response curve of the analyser 

note by the signal f rom a high quality signal generator, 24 
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Fig. 6 This spectrum was obtained by intentionally frequen- 

cy modulating the oscillator of Fug. 5 at a 50 cps rate. 

The total swing in frequency of the oscillator was about 

2 parts in 10 peak to peak, (note the small sidebands 

at 50 cps on either side of the central peak). 

This i s  a spectrum of a 100 kc oscillator, again 

multiplied 145, 800 in frequency, located two floors 

above the room containing the maser  -spectrum- 

analyser system. The signal apparently picked up 

noise in the long cables connecting the two rooms. 

The upper trace was taken approximately one hour 

after the multiplier chain in the spectrum analyser 

was f i rs t  turned on, and ihe  lower trace about 6 houre 

after the cahin was turned on, showing the effect of 

warm up time of a multiplier chain on a noisy signal. 

10 

25 

Fig. 7 

(Note the scale). 26 

Fig. 8 Recording of direct beat note between free running 

oscillator and maser.  

these recordings could also be run to determine the 

power spectrum. 

A numerical analysis of 

27 
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THE POWER SPECTRUM AND ITS IMPORTANCE IN 
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J. A. Barnes and R. C. Mockler 
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Boulder, Colorado 

ABSTRACT 

The power spectral density functions of a frequency multiplier 

chain, driven by several  different crystal  oscillators, were obtained by 

comparing the output with a second chain which was stabilized with an  

ammonia maser .  

onstrated to be relatively fixed; the power spectrum of the other chain 

was determined by two different methods. The results a r e  compared. 

Possible e r r o r s  and uncertainties introduced by the methods a r e  dis-  

cussed. An analysis is  made that relates the instantaneous frequency 

fluctuations of a signal with the power spectral  density function. 

The frequency of the maser  stabilized chain was dem- 

Analysis predicts that when frequency modulation occurs in the 

first stages of frequency multiplication o r  in the primary frequency 

oscillator, the output power spectrum is ,  in general, not symmetrical. 

Furthermore,  the sidebands are increased in intensity by the multipli- 

cation process. This is, in fact, observed to be the case. It is shown 

that a frequency counter will measure the frequency of the center of 

gravity of the power spectrum. 

If signals having a complex power spectrum a r e  used in precise 
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1. INTRODUCTION 

The behavior of stable signal sources such as crystal  oscil la- 

to rs ,  frequency multiplier chains and m a s e r s  can be usefully described 

in te rms  of their power spectra. 

The problem of precise frequency measurement can be under- 

stood only by a fairly detailed knowledge of the frequency source and 

the effect of the measuring system. 

"detailed knowledge" to be given in te rms  of the power spectrum. 

It is  usually sufficient for this 

In general there a r e  two methods of precise  frequency meas-  

urement: (1) determining the total elapsed phase in  an interval of time 

with an apparatus like a synchronous clock o r  a frequency counter, 

and ( 2 )  d i rect  frequency measurement by a resonance method usually 

involving a molecular o r  atomic transition. 

It can be shown that, in general, a frequency counter will, on 

the average, measure the frequency of the center of gravity of a power 

spectrum resulting from frequency modulation of the signal. 

o r  molecular resonance, however, will not, in general, measure the 

center of gravity of the power spectrum. 

parison between an atomic resonance and the output of a frequency 

multiplier chain it is essential  to know the spectral  distribution of the 

signal f rom the chain and the spectral  distribution of the atomic reso-  

nance (including atomic transitions nearby the particular transition of 

inte r e  SI t). 

An atomic 

Thus for a meaningful com- 

In practice,  of course,  one attempts to obtain a monochromatic 

The resul ts  of power spec- source of radiation for the measurements. 

t ra l  analysis with the ammonia maser  spectrum anayzer' '] a re  very 

helpful in this regard. Redesign and modifications can be made until 

the observed power spectrum has the proper character and purity. 
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It is  the purpose of this report  to discuss certain methods of 

obtaining the power spectrum and sample results of such experiments. 

The mean instantaneous frequency and the variance of the instantaneous 

frequency are related to the power spectrum. 

particularly useful in the description of the short  time frequency s ta -  

bility of signal generators particulary in view of the simplicity with 

which the power spectra  can be obtained. 

These relations a re  

2. THE POWER SPECTRUM [ 21 

Suppose that the output voltage of a signal generator 

function of the time, V(t). We can write 

00 

1 i w t  V(t) = 1 a ( w ) e  dw 

8 some 

provided that a ( w )  vanishes at plus and minus infinity. From the 

Fourier  integral theorem 

00 

J 
-00 

In Eq. ( 2 )  it  is supposed that V( t )  = 0 outside some finite time interval 

t = -- to t = - for the purpose of avoiding convergence difficulties. 

Then 

T T 
2 2 

T 
2 
- 

-iwt 
a ( w )  = 1 Wt)e dt . 

Physically a(w)dw may be considered the amplitude of the frequency 

component of V(t)  lying in the range w to w t dw. 

( 3 )  

Thc 
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The total energy dissipated in a unit resistor in the time inter- 

is  given by 
T T 

Val -- 2 t 2 - 
2 2 

T T - 
2 

2 
- 

T 
2 

-- T -m -- 
2 

(4) 

T 

T -03 

2 
-- 

The average power dissipated in this time interval T is given by 

T 
2 M 
- 



where 
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00 

-00 

P (0)  is the average power dissipated per unit frequency interval at 

the angular frequency w and for the particular time interval T. The 

power spectrum o r  the power spectral  density is sometimes defined as 

T 

This is a proper definition provided that the limit exists. 

vergence difficulties can often be avoided by taking the ensemble aver-  

age. 

the ensemble having a t ime duration T, there corresponds an ensemble 

[PT(u)Ii. The power spectral  density can then be defined as 

These con- 

Thus for an ensemble of time functions V.( t ) ,  each member of 
1 

where the brackets denote the ensemble average. 

3. SOME METHODS O F  POWER SPECTRAL ANALYSIS 

The experimental determination of the power spectral density 

of rather narrow banded signal generators is the concern of this 

report. Various methods are possible. The technique that we have 

found most convenient is described in some detail (see reference 1). 

I 



in a time short compared to systematic variations but long enough to 

be consistent with the analyser's bandwidth. 
Aw The power in the frequency bandwidth of the filter--(w - 7 1 to 

A W  lo -+ 2 )--at frequency w is given approximately by 

A a  
2 

W -- 

where T is the observation time. 

P (@,ha) will tend toward a limit. 

If T is  made indefinitely long, 

T 

P W  I true power spectral  density; i. e. , 

or 

Lim P T ( w D A w )  
P ( w )  = Aw+O 

T-cm Aw 
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This defines the power spectrum in terms more directly related to the 
experiment than does Eq. (8) [ 31 . 

The averaging time interval o r  record length T used in the ex- 

periment is not infinitely long, but it is  sufficiently long such that any 

increase in T does not change the character of the plotted spectrum 

perceptibly, (i. e. , the reciprocal of the record length, -, i s  much 

less  than the bandwidth of the filter). 

experiment is the time taken to sweep over a frequency interval equal 

to the width of the filter bandpass. 

1 
T 

The record length in this type of 

In the practical situation, the signal analyzed w i l l  have been 

modified by the transmission characteristics of the detector, filter, 

amplifier and smoothing circuits. 

tion must be taken into account and some modification must be made on 

The effects due to the instrumenta- 

the previous discussion. 

Let us assume that the filter is  tuned to some frequency w and 

that the transfer function of the filte; is given by G ( w  ,a). Also, i f  the 

input voltage to the fi l ter ,  V(t), has its Fourier transform, ab) ,  given 

0 

0 

by 
00 

-iwt a(w) = V(t)e dt , 
J 

-a3 

then the output voltage of the fi l ter  i s  given by 

a3 

-a0 

The average power delivered to a load by the filter is then pro- 

portional to T 
2 
- 

[ 

t 

t 

t 

d 

E 

ir 

E 

st 

WI 

ir 

u 

1 

V 

= Lim T- ;I; 1 Vt(wo,t)dt. 
0 
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Comparison of Eqs. (14) and (15) with Eqs. (l), (21, and (7 )  givee 

where P(o) is the actual power spectrum of V(t). 

P (w ) i s  our estimate of the power density at the angular f r e -  

It is an estimate of the local power density, P ( w ) ,  only to 
0 0  

0 
quency w . 
the degree to which / G ( w  , w)  I 2 approximates a Dirac delta function. 

0 

Sample spectra  a r e  displayed in Figures 2 ,  3, and 4. The 

discrete line spectrum of Figure 4 resul ts  f rom the introduction of 

frequency modulation by two (or  more)  signals, 60 cps and 120 cps 

(the oscillator used bO cps ac filaments). 

the bandwidth of the filter is  larger  than the total width of any one of 

In this particular spectrum 

tal oscillator 

driving a frequency multiplier chain. 

Figure 4 may be written approximately as 

in which the crystal  was emersed  in liquid helium 

The power spectrum of 

N 
P 

i=l 

in view of the low resolution relative to the width of a single peak. In 

Eq. (17), q is a weighting factor for a particular peak at angular f r e -  
i 

quency w b(w - w. )  is the Dirac delta function. In order  to see the 

structure of the individual peaks additional frequency multiplication 

would be required or  a substantial decrease in the filter bandwidth. 

i' 1 
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The power spectrum can a lso  be estimated by a numerical 

analysie from a recorded plot of V(t). An example of such a plot ie  

shown in Figure 8. The various methods of analysie of euch record- 
ings a r e  to be found in the l i terature [ 6  1 

4. INSTANTANEOUS FREQUENCY AND ITS RELATION 

TO THE FOURIER FREQUENCY COMPONENTS 

In general, there a r e  two methods of precise frequency meas-  

urement:  ( I )  determining the total elapsed phase in an interval of time 

with an apparatue like a eynchronoue clock o r  a frequency counter, and 

(2) direct  frequency meaeurement by a resonance method usually in- 

volving a molecular o r  atomic traneition. 

The elapsed phase method of fr-equency measurement has two 

modifications: (1) a frequency counter which counts the number of 

cycles in a unit of time, and (2)  period measurement which measures  

the time interval between two positive going crossovers of the signal. 

Either system givee the "average" frequency in a time interval 6T euch 

that 

Tt6 T 
- - * = -  I 1 i d t  

6T 6T 5 1 -  

T 

where 6+ i e  the elapsed phase in the time interval 6T. 

the period measuring scheme, 6+ = 2n and the 6T corresponding to this 

phase change is what i s  measured. 

In the case of 

a 

n 
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It is  important to realize at this point that these measurements 

are  not simply related to the Fourier components of the signal being 

measured, at least  - a priori. 

wave which las ts  f rom T to T t bT, the Fourier components a re  spread 

Over a frequency range fiw = - 
quency measurement would have an uncertainty in the measured f r e -  

quency of the order  of 6 ~ .  

the average instantaneous frequency of the sine wave is possibly meas-  

ured to an accuracy for exceeding 6~ = - 

This i s  evident since, given a pure sine 

and thus a resonance method of fre-  
1 
6T ’ 

For a period measuring scheme, however, 

1 
6T 

A simple example should serve to illustrate this point: Con- 

sider a very stable oscillator which generates a signal of approximately 

100 cps. 

count a very stable and accurate 1 Mc signal, the counter will count for 

sec.  and the counter will display the period accurate to about 
1 

about - 100 
f 1 p sec;  that is, to an accuracy of about f 10 cps! Thus with this 

scheme we have measured the average instantaneous frequency (not - a 

Fourier frequency component) in a period of 10 seconds with a pos- 
-2 sible e r r o r  o f f  10 

Fourier components. 

quency multiplier -frequency-counter system instead of the period 

measuring system). 

If this signal is used to gate a counter which is arranged to 

-2 

-2 

cps instead of the f 50 cps e r r o r  of measuring the 

(Similar examples can be worked out for a f r e -  

Returning to Eq. (18)’ let us suppose that the time of measure-  

ment, b T ,  is made small enough that &t) makes no appreciable change 

in this interval of time. 

the measurement gives the instantaneous frequency, 

With these conditions satisfied, we see that 



. .  

- 1 1 -  

It is possible to obtain some relations between the instantaneoua 

frequency of a signal and its Fourier components for the case of a sig- 

nal  without amplitude modulation. Such a signal is  of the form 

(19)  

where E 

the following discussion we will consider only the function 

i s  a constant and +(t) i s  some real  function of the time. For 
0 

The second t e r m  on the right of Eq. (19) only serves  to symmetrize 

the power spectrum (since E( t )  i s  real  but f ( t )  is  not). 

which can be said of the frequency of f ( t )  can easily be extended to E(t). 

Thus anything 

The importance of considering only f(t) i s  that it satisfies the 

e quat ions 

1 f* f  = 1 

Thus an instantaneous frequency for f(t) can be defined as 

In order  to obtain some connections with the power spectrum of 

f(t), consider tfie function f ( t )  defined by the relations T 

T T 
f(t) for -t S t S -  f,(t) = 2 

1 [ 0 otherwise 
(23) 



where 
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T 
2 
- 

2nnt -i - T 
dt . aT( q-) = 1 f(t)e 

T 
2 

-- 

Substitution of Eq. (24') and its complex conjugate into (22) 

gives 

m, n=-m 

T T Taking the time average of Eq. (26) over the interval - - 2 2 t 5 - 2 yields 
, 

since 

T 
e i 2 ~ ( n  - m)t 

1 i f n = m  
o i f n f m  ' 

dt = { T - 
T 

T 
2 
- 

2m "I* ." If w e  now pass to the limit as T becomes very large,  - T aP - 
proaches a continuous variable, say w, since each unit change in n 

changes - T by only - T , a very small  quantity. Also the f i rs t  differ- 
2an 2 R  

( 

f 

a 

ii 

t 

11 

a 

R 

ql 

I 

1 

1 

t 

tz 

tT 

t 

r 

It  

nc 

I 
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2 nn 2lr 
T is  - which approaches do as T becomes very large. ence of - T 

Thus Eq. ( 2 7 )  becomes in the limit 

00 

G? = 1 P(w)odw 

-a3 

where 

P(0 1 

is the power spectrum of f(t 

The right side of Eq. (28 )  i s  just the average frequency, ( W )  I 
of the Fourier components since f rom Eq. (4) 

00 1 P(w)dw = 1 

-m 

(29) 

for f(t) satisfying (21). 

of gravity of P(0). 

instantaneous frequency is just  the center of gravity of the power spec- 

trum for a frequency modulated signal. 

that the elapsed phase method of frequency measurement gives the time 

average of the instantaneous frequency over the interval of measure-  

ment and thus if this interval is  sufficiently long it will give the fre- 

quency of the center of gravity of the power spectrum! 

Equivalently, the right side of (28) is the center 

Thus Eq. (28) shows that the time average of the 

Returning to Eq. (18) we see  



- 15- 

It is also of interest to compute the variance (or mean square 

deviation from the mean) of the instantaneous frequency; that is, the 

quantity, 

- 
(n(t) -m2 = si2 - 2n A ( t )  +a2 

- 
2 -2 = n  - Q  . 

Since n ( t )  is a real function, 

d P  
dt ' n ( t )  = n*(t )  = if - ' 

2 d P  df 
dt dt 

n ( t )  = f*f- - = +i . . I  

Applying the procedure used above to'Eq. ( 3 1 )  we obtain 

00 - 
S2' = 1 P(w)02dw . 

-00 

Combining Eqs. (28), (30) and (32) we obtain 
I 

( 3 0 )  

(31)  

(33)  

E 

* 

T 

TI 

m 

au 

Wi 

t h  

t h  

th 
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But 

00 

2 2 
= 1 P ( w ~  dw - (a) 
-00 

( 3 4 )  

where use has been made of Eq. ( 2 9 )  and 

Therefore combining Eqs. (33)  and (34 )  gives 

00 - 2 
Q(t)  - Q )  = 1 P ( w ) ( a  - (a) ) dw . 

-a, 

(35)  

That is, the variance of the instantaneous frequency is just the second 

moment of the power spectrum. 

Returning now to Eq. (19), it is easily proveable that if the 

average Fourier  frequency, 

width of the spectrum, the addition of the t e r m  e -i'(t) adds a t e r m  to 

the power spectrum of the form P(-a), and thus it is possible to t r ea t  

the so called "one sided" power spectrum of E(t). 

the multiplicative constant in Eq. (19) ,  Eqs. ( 2 8 )  and (35) take the form 

o , of f(t)  is very large compared to the 

Taking into account 

00 - n = 2 1 P'(o)o'c1w = ( 0 )  2 
0 0  
E 
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b 

a3 

2 (a - T i l 2  = 2 1 P'(w)(w -(a)) dw 

0 0  
E 

where P'(o) is the power spectrum of E(t)  and these equations a re  sub- 

ject to the condition 

1 

?I >> [ (*(t) - m2] 

which is easily satisfied by most oscillators. 

As an example of an application of Eq. (35') ,  the second m o -  
2 2 ment of the spectrum of Figure 4 turns out to be about 30,000 cps /eec , 

or the RMS frequency deviation i s  about 174 cps, or more  than one 

part  in lo8! For a one second count, however, this oscillator has a 

spread of only about f 2 parts in 10" f rom second to second and a 
11 drift  of only a few parts in 10 per day, One concludes that this 

spectrum must be very stable. 

5 .  CONCLUSION 

Power spectra  of highly stable signal sources can be observed 

with the ammonia maser  spectrum analyser in a convenient and rapid 

way. The short  t e r m  stability of these sources can be obtained f rom 

these observed spectra  simply and without the usual laborious analysis 

of large amounts of data. 

The device has use as an instrument for investigating noise 

properties of signal sources and the multiplication processes in f r e -  

quency multiplier chains e 

C 

1 

C 

c 

f 

I 

t 

1 

1 

i 
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Frequency modulation introduced into a crystal  oscillator o r  

multiplier chain in enhanced by the frequency multiplication process. 

Zn fact the sidebands in the power spectrum a re  found to be increased 

in amplitude by the factor of frequency multiplication- -see Appendix. 

This is demonstrated in Figure 2. 

power spectrum of a signal that is frequency modulated by two o r  more 

modulating signals of different frequency will in general be unsymmetri- 

calL7I .  This is vividly displayed in the power spectrum of Figure 4, 

It can be demonetrated that the 

Spectrum analysis has provided a particularly useful tool in 

designing crystal  oscillators and frequency multipliers such that they 

yield signals of the highest purity. 

one is led to the conclusion that one of the most important things in 

obtaining a pure signal is to keep the electronics simple, and use dc 

filaments in the oscillator and early stages of multiplication. 

nal source that provides the Bureau atomic frequency standards with 

the purest signals is a system involving a "master and a slave" oscil-  

lator. 

phase locked to a more elaborate crystal  oscillator (with good long 

t e r m  stability) drives the frequency multiplier chain. 

F r o m  a study of the power spectra  

The sig- 

A simple one or  two tube crystal  oscillator that is loosely 

A knowledge of the power spectrum is important not only in 

describing frequency stability and noise analysis but for other reasons 

also. 

For example, in atomic beam frequency standards, the simple 

theory of the spectral line shape assumes the atomic transition to be 

excited by pure sinusoidal or  cosinusoidal radiation. 

course, the transition is induced by a certain distribution of frequencies. 

This distribution ie  determined by the frequency multiplier and c r y s -  

tal oscillator f rom which the exciting radiation is derived. 

tion in general is composed of the carrier frequency, noise and dis-  

In actual fact, of 

The radia- 
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Crete sidebands resulting from frequency modulation. The discrete 

sidebands a r e  usually due to 60 cps--the power frequency--and multiplee 

thereof. 

the noise to a low enough level so that it is not the limiting factor in 

the precision of the frequency measurements.  

a r e  more  difficult to remove. 

tensity by the factor of frequency multiplication. 

quite large (- 2000) and consequently these sidebands can introduce 

i 
In the atomic clock experiments it is  found possible to reduce 

The discrete sidebands 

These sidebands a r e  multiplied in in- 

This factor is usually 

ra ther  large frequency e r r o r s .  

significant if the power spectrum is unsymmetrical. 

par ts  in 10 

if the power spectrum is known, the proper spectral  line shape can be 

calculated in order  to find the proper correction to the measured f r e -  

quency. 

Sidebands so that the simple line shape theory applies. 

of the power spectrum is essential  in order  to assign a figure of accu- 

racy to the atomic beam frequency standards. 

E r r o r s  of this sor t  a r e  particularly 

(Shifts of a few 

Of course,  9 have been observed by actual experiments). 

It is  more desireable--and much simpler--to eliminate these 

A knowledge 
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(a) 

I c 2 

(bl ( C )  

F g. 2 Figure 2(a) shows the square root of the power spectrum for 
a 3. 3 Mc signal. Figures 2(b) and 2(c) show the same signal 
after being multiplied in frequency by factors of 3 and 9 
re  spec tively . 

I .  
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Fig. 3 Trace 1 is  a high resolution spectrum of the central  peak of 
a 10 Mc quartz crystal  oscillator 
stated in a liquid helium cryostat  . The oscillator was 
equipped with DC filaments but st i l l  exhibited 60 cps s ide-  
bands about 30 db below the central  peak (not shown in this 
figure). 
10 Mc and apparently some pickup of the standard is respon- 
ible for the sidebands shown in this trace.  
response curve of the spectrum analyser. 

ose crystal  was thermo- P!T 

This oscillator operates at about 13.4 cps above 

Trace 2 is the 
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Fig. 4 This spectrum was obtained from the same oscillator as 
Figure 3.  
oscillator was equipped with 60 cps,  ac filaments. 
the different frequency scale).  

At the time this t race was made, however, the 
(Note 
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Fig. 5 This spectrum was obtained by analysing the direct  beat 
note between the free running oscillator -multiplier -chain- 
system and the ammonia maser .  
is  phase locked to the maser  to give a relatively pure sig- 
nal to be used in the analysing of other oscillators. The 
response curve of the analyser was obtained by replacing 
the maser-oscil lator beat note by the signal f rom a high 
quality signal generator. 

It is this oscillator which 
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Fig. 6 This spectrum was obtained by intentionally frequency mod- 
lating the oscillator of Fig. 5 at a 50 cps rate. The total 
swing in frequency of the oscillator was about 2 parts in 
l o l o  peak to peak, (note the small sidebands at 50 cps on 
either side of the central  peak). 
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Fig. 7 This is a spectrum of a 100 kc oscil lator,  again multiplied 
145,800 in frequency, located two floors above the room 
containing the maser  -spectrum-analyser system. 
signal apparently picked up noise in the long cables connect- 
ing the two rooms. 
mately one hour after the multiplier chain in the spectrum 
analyser was f i r s t  turned on, and the lower t race about 
6 hours after the chain was turned on, showing the effect 
of warm up time of a multiplier chain on a noisy signal. 
(Note the scale).  

The 

The upper trace was taken approxi- 
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SEC. 

Fig. 8 Recording of direct beat note between free running 
oscillator and maser .  
recordings could also be run to determine the power 
s pec t rum. 

A numerical analysis of these 
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APPENDIX 

As an example of the effect of frequency multiplication on an 

F M  signal consider j u s t  one stage of multiplication. Aseume that the 

current,  I(t), in the output tank of the multiplier is related to the input 

voltage, V(t), by the transfer function, g(V), which is a function of the 

input voltage; i. e. , 

If the input signal is of the form 

where +(t) is some function of tima, then the current  becomes 

I = g(V0 cos +) vo cos + 

Since cos (p is an even function of +, g(V cos +) is also am even function 

of (p, and therefore I is an even function of +. 
panded as a Fourier  cosine ser ies  in +; i. e. # 

0 

Therefore P can be ex- 

To res t r ic t  the case to a simple F M  wave, Pet 
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Typically w 

bandwidth of the output tank is grea ter  than 2N6w 

The condition that Z(w) is sharp  enough to reject  (N - l)w 

usually requires N to be l e s s  than 10. 

is very much smaller  than w and the condition that the 
m 0 

is easily satisfied. 
m 

0 
and (N t )w 

0 

Eq. ( 5 )  shows that the modulation index ie multiplied by the 

factor of frequency multiplication and the frequency of modulation is  
unchanged. Extensive use is made of this fact in FM t ransmit ters .  c 81 . 

Figure 4a shows the square root of the power spectrum, ( d m ) ,  
of a signal while Figures 4b and 4c show the same signal after being 

multiplied in frequency by 3 and 9 respectively. 
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where w is the ca r r i e r  frequency, w 

and 6 is  the modulation index, 

yields, 

i e  the modulating frequency, 
0 m 

Substitution of Eq. (4) into Eq. (3)  

t.. t % c o s ( N w  t t N 6 e i n w  t ) t  ... . 
0 m 

If the impedance, Z(W), of the output tank is sufficiently peaked 

about 0 = Nu , but broader than 2N6w 

given approximately by 

, the output voltage, Vt(t) ,  is 
0 m 

V'(t) %Z(NO ) cos(Nw t t N6 sin w t )  . ( 5 )  
0 0 m 


